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TVB Uniformly High-Order Schemes 
for Conservation Laws 

By Chi-Wang Shu 

Abstract. In the computation of conservation laws ut + f(u) = 0, TVD (total-variation- 
diminishing) schemes have been very successful. But there is a severe disadvantage of all TVD 
schemes: They must degenerate locally to first-order accuracy at nonsonic critical points. In 
this paper we describe a procedure to obtain TVB (total-variation-bounded) schemes which 
are of uniformly high-order accuracy in space including at critical points. Together with a 
TVD high-order time discretization (discussed in a separate paper), we may have globally 
high-order in space and time TVB schemes. Numerical examples are provided to illustrate 
these schemes. 

1. Introduction. In this paper we consider the numerical solutions to the hyper- 
bolic conservation law 
(1.la) ut + f(u)X = 0, 

(1.1b) u(x, 0) = u0(x). 

Here u = (ul,..., us)", and the Jacobian matrix A(u) = af/3u has s real eigen- 
values 

Al(u) < X2(u) < *. * < XA(U) 

and a complete set of eigenvectors. 
On a computational grid xj = jALx, t, = nAt, we use U7n to denote the computed 

approximation to the exact solution U(Xj, tn) of (1.1). 
We restrict our theoretical discussions to the scalar case s = 1. Extensions to 

systems can be done following the lines of, e.g., [7], [8], although a convergence 
theory for general nonlinear systems is still unknown at present. 

We only consider pure initial value problems, i.e., we assume u0(x) in (1.lb) to be 
either periodic or to have a compact support. Initial-boundary value problems will 
be discussed in a separate paper [11]. 

The main difficulty in solving (1.1) is that the solution may develop discontinuities 
(shocks, contact discontinuities, etc.), even if the initial condition u0(x) in (1.lb) is 
smooth. For this reason, weak solutions have to be considered and the standard 
numerical analysis is very hard to apply. In recent years, TVD (total-variation-di- 
minishing) schemes have been constructed and proven to be very successful in 
solving (1.1); see, e.g., [1], [2], [6], [7], and the references listed there. The total 
variation of a discrete scalar solution is defined by 
(1.2) TV(u) = E - uj, 
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and if 

(1.3) TV(un+') < TV(un) 

we say the scheme is TVD; while if 

(1.4) TV(un) < B 
for some fixed B > 0 depending only on TV(u0) and all possible n and At such that 
n At < T, we say that the scheme is TVB in 0 < t < T. Clearly, TVD implies TVB. 

One major advantage of TVB schemes is that there is a convergent (in Local) 

subsequence as Ax -> 0 to a weak solution of (1.1). If an additional entropy 
condition which implies uniqueness of weak solution to (1.1) is satisfied, then the 
scheme is convergent. See, e.g., [2]. 

One important disadvantage of all TVD schemes is that they are at most 
first-order accurate at nonsonic critical points (i.e., points at which au(x, t)/ax = 0 
0 f'(u(x, t))). This restricts the accuracy of all TVD schemes to be at most first 
order in the L.,-norm and at most second order in the L,-norm for general 
problems, no matter how accurate they are in monotone smooth regions. See, e.g., 
[6]. 

To overcome this difficulty, recently Harten, Engquist, Osher, and Chakravarthy 
[4], [5], [3] constructed ENO (essentially nonoscillatory) schemes which are of 
globally high-order accuracy in smooth regions and extremely stable according to 
their extended analysis and numerical experiments, although a complete convergence 
theory (e.g., TV boundedness) for such schemes is still unavailable. In this paper we 
use another approach and present a simple modification of some existing TVD 
schemes such that the resulting schemes can be proven to be TVB and of globally 
high-order accuracy in space. The construction procedure is simple, and the schemes 
can be applied to steady state calculations (e.g., implemented with the TVD 
Runge-Kutta type time discretizations in [9]) as well as to time-dependent problems 
(e.g., implemented with the TVD high-order time discretizations in [10]). But since 
these methods use a fixed stencil, they may smear discontinuities and pollute more 
than the ENO schemes, which use an adaptive stencil to obtain information from 
smooth regions. 

The formal "order of accuracy" in this paper is in the sense of local truncation 
errors, i.e., if the local truncation error TE = O(Axr ), we say the scheme is 
(formally) r th order accurate (see, e.g., [1]). 

We will use the standard notation 

(1.5) A+uj = Uj+- Uj; Au = Uj -Uj_1 

A semidiscrete (method of lines) scheme to (1.1) of conservation form is a system 
of ODE's, 

(1.6) +UI=- jX(/? - f- 1/2)' 

where the numerical flux fj /2is defined by 

(1.7) j (U 

which is Lipschitz continuous in all its arguments, and satisfies the consistency 
condition 

(1.8) f(U., U) = f (U). 
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We also consider Euler forward time discretization of (1.6), 

(1.9) u+y =u x(A+1/2 f72 -1/27)- 

Here X = A t/Ax is called the CFL number. 
If a consistent numerical flux f1+1/2 satisfies 

(1.10) sign(uj+1 - uj)(/?1/2 -1(u)) 
^ 

0 

for all u between uj and uj+1, it is said to be an E-flux. See, e.g., [7]. 
E-schemes (schemes (1.6) and (1.9) with fluxes fj? /2as E-fluxes) are TVD and 

entropy-condition-satisfying, so they are convergent. But E-schemes can be at most 
first-order accurate. In many parts of this paper we use E-fluxes as our building 
blocks. We will use hj+112 to denote an E-flux, and keep f +1/2 as a notation for a 
general flux. The following are a few useful 3-point E-fluxes. 

Engquist-Osher 

(1.11) hj2172 min(f'(s),0) ds + max(f'(s),0) ds + f(0); 

Godunov 

min f(u), if uy < U1 + 
(1.12) hG i US u< U, +l 

j+112 max 1 (u), if u1 > Uj 
Uj> U> Uj +1 

Roe (with entropy fix) 

(1.13) hj+172= 2f(u?,i)+f(u,)- A A1(u)+U [ A+?U1Ai~ 

unless 

Uj < U < Uj+1; 

then take any Lipschitz function so that 

a+ 1/2 <f<( ) - 

Here u is the unique sonic point, f'(ui) = 0, and f"(u) > 0 for all u. 
Lax-Friedrichs 

(1.14) =v+1/2 =[f(u1+?) +f(u1) - aA(tUJ] 

where a is a fixed positive number satisfying 

a)-> max If '(u) I. 
min, u. < u < max, u, 

The format of this paper is as follows: In Section 2, a TVB modification 
procedure is applied to the TVD schemes in [7], yielding TVB semidiscrete schemes 
and their Euler forward-in-time version of uniformly high-order spatial accuracy; in 
Section 3, the schemes in Section 2 are equipped with the TVD high-order time 
discretizations in [10], giving globally high-order in space and time TVB schemes; in 
Section 4, we illustrate the generality of the TVB modification procedure by 
applying it to another kind of second-order TVD schemes, making them uniformly 
second-order; in the appendix, several numerical results are included to illustrate the 
schemes in Section 3. 
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2. TVB Semidiscrete Schemes of Uniformly High-Order Accuracy. We shall 
consider semidiscrete (method of lines) schemes which are of conservation form 

(2.1) = -= Ax (f+1/2 fJ-1/2) 

and their first-order Euler forward time discretization 

(2.2) U;?' = V - X( 
^ 

f - 

Starting with a three-point E-flux hj+1/2 (1.10), define 

(2.3a) dfj+1/2= hj+ 1/2 - f (uj), 

(2 .3b) dfj+ 1/2 = (Uj + 1) -j + 1/2 

(upwind-downwind decomposition). 
In [7], Osher and Chakravarthy defined the following flux: 

j+l/2 +l/2 + 
m 

[ + (1) k m - 2l)](df k+l/2 )(k) 

+ f [E k( 1),B k + m - k( l)](dfJk+1/2)k 
k=-mn?1 

Here m > 2 is an integer, 0 < , < (M(2m))-, 

/A A! 
( B B!(A- B)! 

is the usual binomial coefficient, and 

(2.5a) P = (-)m 1(m(2M)) for m > 2, 

(2.5b) Po, = 2 

(2.5c) PM -VPk k = ,L........,m-1 

(2.5d) k k ?( ) (( mI)( m + )) m (m-k) 
fork = 1,2,...,m-1, 

(2.5e) pm = PM fork= +1, +2 .?.. ?+(m-1), 

(2.5f) M_ I 

Also, 

(2.6a) (dfj?72)(k) = m(dfh+l/2, bdfjk+l/2, bdfjk+3/2) 
for all k with 0 0 k 0 1, 

(2.6b) (dfj+112)( = m(df+?1/2, bdfj+32), 

(2.6c) = m(df;?1/2, bdf7_ 1/2), 

(2.6d) (dfj++ l/2)() = m ( dfj+ 1/2, bdfjk+l/2, bdfJkl/2) 

for all k with 0 0 k 0 -1, 

(2.6e) (dfj+12)(= m (dfj+ 1/2, bdfj12) 

(2.6f) dfj++ I/2 ) = m ( dfj++ 1/2, bdfj+ 37/2) 
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The parameter b is in the range 

(2.7) 0<b E ( I 2-1 ) +2/( 12)) 

and the minmod function m is defined by 

m (a,,.*.., al) 

(2.8) /s. min(Ia, I,-..., Ia, ), if sign(aJ) 
= = 

sign(a,) =s, 

0, otherwise. 

They proved the following 

THEOREM 2.1 (Osher and Chakravarthy). (a) The scheme (2.1), (2.3), (2.7) is TVD; 
(b) For m < 8, b can be chosen to be greater than one; 
(c) The unlimited version (i.e., with all the superscripts on df', df- removed) of the 

scheme is (2 m - 1)-order accurate; 
(d) The scheme (2.2)-(2.7) is TVD under the CFL restriction 

{ 
dfj++- - df-+ 1/2 1 

--1/- /\++ UI 

( L2 j =2 (2 j 
- 

) 2 

(2.9) ~~~~j=2 2 j(2j - 1) ( m - I - m - 22 

+ E 2j(2j -1) + m - 2) 

The CFL number (2.9) is not too small. For example, with m = 3 (5th order) the 
CFL number is 0.44. 

They also have a class of a-schemes having similar properties. 
Because these schemes are TVD, they can be only first order at nonsonic critical 

points. Hence, no matter how accurate they are at other points, when applied to a 
general problem with critical points in its solutions, these schemes are only first-order 
accurate in the LO.-norm and second-order accurate in the L,-norm. (In steady state 
calculations, numerical evidence seems to indicate an increase of accuracy by one 
order; see [7].) We should also point out that if the E-flux hj + /2 is not smooth 
enough, the accuracy at sonic points (where f'(u(x, t)) = 0) is also restricted: If 
Godunov or Roe fluxes (which are just Lipschitz continuous) are used, we only have 
first order at sonic points; if Engquist-Osher flux (which is C') is used, we have 
second order at sonic points; and if Lax-Friedrichs flux (which is C?) is used, we 
may have the full high order of the scheme at sonic points. 

We begin to modify the schemes (2.2)-(2.7), trying to get schemes which 
(a) are TVB; 
(b) have the same high order of accuracy as the unlimited version in smooth 

regions, including at critical and sonic points. 
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For a positive number M > 0 and Ax, we define the function mc(M, Ax) as 

(2.10) mc(M, Ax)(a1, a2, , a,) 
= m(a1, a2 + MAx2 sign(aj),.. ., a + MAX2 sign(a1)), 

where the "minmod" function m is defined as in (2.8). 
We modify (2.6) by changing all the functions m there to mc(M, Ax): 

(2.11a) (dfjr172)(k) = mc(M, Ax)(dfj17+12, bdfj kk+/2, bdfjk+?3/2) 
for all k withO # k 1, 

(2.11b) (df17+172)( ) = mc(M, Ax)(dfj +172, bdfj+372), 

etc. 
This simple change leads to a scheme satisfying both (a) and (b). 

THEOREM 2.2. (a) For any M > 0, the scheme (2.2)-(2.5), (2.11), (2.7) is TVB in 
0 < t < T with a fixed T > 0, under the same CFL restriction (2.9); 

(b) If the E-flux hj+172 has 2m - 1 Lipschitz continuous partial derivatives about 
its two arguments, then for m < 8, for any given A > 0, there exists an M > 0 such 
that the scheme (2.2), (2.4), (2.5), (2.11), (2.7) is (2m - 1)-order accurate in space in 
any region where lul, I ux, Iu~x l A. 

Proof. (a) If we denote the flux (2.4) with limiters (2.6) by f1 ?1/2 and the flux (2.4) 
with limiters (2.11) by f1?172' then, from the definition of mc(M, Ax) in (2.10), we 
easily see 

(2.12) ji+1/2 = f+1/2 + 1/2 
with 

IcJ1?i2IS L p+(-) Al)kI + 2m 2 |MAX2 
k=-rn1 k+1l 

(2.13) + a, Pk p (-1 )k(k m 1) MAx2 
k=-mrlk?1m 

m-1 
-2MAx2 L ,mk |= BAX2, 

k=-mr+n 

where B is a fixed number. 
In the second to the last equality above we used the fact 

(2.14) ( m - 2 
) k PT 

which was proved in [7]. 
Let 

(2.15) Ujfli = ujn - (A?172 f1-172) 
be the solution of (2.4), (2.6); then the solution of (2.4), (2.11) is 

u. = - ~f + 1/2 .fJ-1/2) 

(2.16) U n 
f-+1/2- fj-1/2) -( +1/2 -Cj 1/2) 

=j- - X( 2 _- 1 
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So, since (2.4), (2.6) is TVD, we have 

Uv(n+l) '< TV(-n+l) +2LC+/-J12 TV(u ' uT(&' + 2XY, ~j1~12 -Cj12 
(2.17) 1 

s TV(un) + 4XNBAx2 = TV(un) + BAt, 

where B = 4BL, L is the length of the x-support of u at time T (or the length of 
one period in the periodic case), and N is the total number of intervals. 

Now (2.17) trivially implies 

(2.18) TV(un) < TV(uO) + BT 

for all n and At such that nAt < T, i.e., the scheme (2.4), (2.11) is TVB in 
o < t < T. 

(b) By consistency f (uj) = h (uj, uj), so 

dfj-+1/2 = h(uy, uj+,) - h(uj, uj) 

(2.19) (~ 
= h2(u1l, uj)A+u + h22(u., ) (A2u')) = cAx + dAx2, 

2 
where c, d depend on lul, IuxI, IuJxI and the derivatives of h. 

Assume A\x is small. If c # 0, then locally dfj-+1/2 and dfk+ kl/2 are of the same 
sign, and by continuity 

(2.20) lim d fj 1/2 - 1 < b. 
Ax-0 dfj+O 2 

In this case, the two functions mc(M, Ax) and m are the same, and they both 
pick the first argument dfj+?12. 

If c = 0, there exists an M (depending on A) such that 

dfjk l/2 | MAx2/(l + b) 

for k < m - 1, hence the mc(M, Ax) function again picks the first argument dfj-+112 
(unlike the m function which may pick either argument in this case, which is the 
source of local degeneracy of accuracy at critical or sonic points). So for any A > 0, 
we can always choose M such that in any region where lul, luxl, IuxxI < A, the 
mc(M, Ax) function picks only the first argument, hence the scheme is identical to 
the unlimited version in such regions, thus is (2m - 1)-order accurate. 

Theorem 2.2 is now proven. E[ 
Remark 2.1. The total variation estimates (2.17), (2.18) are very crude. We can see 

that C ? * 0 only at points near which dfj++?12 or dfj+712 changes sign (or 
approaches zero), i.e., near critical points or (in the case of upwind E-fluxes) sonic 
points, or points of discontinuity. Since usually there are only a fixed number of 
such points (independent of Ax), the increment of TV(un) is actually O(Ax2) 
instead of O(Ax) for each time step. So the total variation bound (2.18) can be 
improved in most cases to TV(un) < TV(u0) + O(Ax) for 0 < nAt < T, hence the 
computation of steady state solutions (where we need a large t) is also possible. 

Remark 2.2. The requirement that the E-flux hj+?12 must have 2m - 1 Lipschitz 
continuous partial derivatives is essential. Without this, we will get local degeneracy 
of accuracy at sonic points. This fact is demonstrated by numerical evidence (see the 
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appendix). For the purpose of smoothness, the Lax-Friedrichs flux (1.14) is the best, 
because it is in the class CO. If we do not like the severe dissipativity of Lax-Friedrichs 
flux, we may also use Roe flux (1.13) with the absolute value function la +1/21 
(which is not smooth at 0) replaced by a smooth function g(a j+1/2) such that 
g(s) = Isl if Isl >I e for some small positive ?. Although the first-order Lax-Friedrichs 
scheme is very dissipative, the higher-order TVB schemes based on Lax-Friedrichs 
flux seem to perform quite well according to our (limited) numerical experiments. 

3. TVB Schemes of Globally High-Order Accuracy in Space and Time. The TVB 
schemes in Section 2 can be equipped with the TVD high-order time discretizations 
in [10] to give schemes with globally high-order accuracy in space and time. 

Let 

(3.1) L(1)(u)j -fj+ 1/2 fJ -1/2)- 

Then (2.2) becomes 

(3.2) U>n+1 = n + L(l)()j 

which is r th order in space: 

(3.3) L(l)(u) - At(-f(AU)) + O( Axr+l) 

and TVB under some CFL condition 

(3.4) X < X0 

(see (2.9)). 
If we apply the same scheme to ut = (f(u)), instead of (1.1), we get 

(3.5) u>+1 = U + L(-)(u)j, 

(3.6) L(-1)(u) - At(f(u)). + O(Axr+l). 

Then, it is proven in [10] that the scheme 
m 

(3.7) U7n1 a [Unaku + fki(sign(3k )L(si9n(#k))( Un-k )J)] 
k=O 

is TVB if 

(3.8) ak > 0 k = 0,1,...,m, 
and 

m 

(3.9) a =k 1, 
k=O 

under the CFL condition 

(3.10) < X a) 

and s-order accurate in time and space (1 < s < r) if (3.9) and 
m 

(3.11a) - E2 (kak - fk) = 1 
k=1 

(3.11b) (-1)' E k'-(kak - 'fk) = 1, 1= 2,3,... ,s, 
k=1 

are satisfied. 



TVB UNIFORMLY HIGH-ORDER SCHEMES FOR CONSERVATION LAWS 113 

In [10], it is also proven that for any r, the coefficients ak and /Pk can be found to 
satisfy (3.8)-(3.11). 

Generalizations to equations with forcing terms and to multi-dimensional prob- 
lems are also given in [10]. 

Hence, the TVB modification procedure in Section 2, plus the above-mentioned 
TVD high-order time discretizations in [10], gives globally high-order (up to 15th 
order) in space and time TVB schemes. 

Numerical examples for applying these schemes are given in the appendix of this 
paper. 

4. TVB Modification Procedure Applied to Other TVD Schemes. The TVB 
modification procedure discussed in Section 2 is also applicable to change certain 
other TVD schemes to TVB schemes with globally high order of accuracy. We use an 
example to illustrate this. In [1] Harten used a "modified flux" approach to get a 
second-order TVD scheme from the first-order TVD Roe scheme, by comparing the 
flux with that of the second-order Lax-Wendroff scheme. His numerical flux is given 
by 

(4.1) f+1/2 =2[f (Uj) + f (Uj+1) + 9j + g+?-I a+1/2 + Y1/2 JA+UJ 

where 

(4.2) a+j1/2 = U 

(4.3) 9j= m(g1192- g1+1/2), 

with 

(4.4) gj+1=2 =(a +1/2)A+Uj, 

and the function a is defined by 

(4.5) a(a) = a a(1 - Al a l). 

Also, 

(4.6) g=+1/2 
- 

A 
12 

In [1] it was shown that 4y+ /2 defined by (4.1)-(4.6) is identical to the second-order 
Lax-Wendroff flux 

(4.7) L = 2[(u) ?f(u ) - 2+U 

up to O(Ax2), hence the scheme is second-order at the points where the coefficient 
of Ax2 term is smooth. Actually, the scheme is second-order except at critical points 
and sonic points. The scheme is TVD because it is just the Roe scheme applied to 
the "modified flux" fj + gj. In [1] it is also proved that the new CFL condition is 
still 

(4.8) Xmax I aj+ 1/2 1. 

In order to apply the TVB modification procedure, we first change the definition 

gj in (4.3) a little. Notice that the only requirement for gj is 

(4.9) gj = Axa(a1)(UX)j + O(AX2). 
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We simply define 

(4.10) gb =m(g +1/2, bgj 1/2) + 2 m(gj-1/2, bgj+112) 
with gj+1/2 defined by (4.4), (4.5), and 1 < b < 3. 

Then we can make the TVB modification: 

(4.11) gM = ?mc(M, Ax)(gj+1/2, bgj-112) + 2mc(M, x)(gj+?/2, bgj+?12). 
We have the following 

THEOREM 4.1. (a) Scheme (2.2), (4.1)-(4.6), with gj in (4.3) replaced by gb in 
(4.10), is TVD under the CFL condition (4.8), and second-order accurate except at 
critical and sonic points; 

(b) Scheme (2.2), (4.1)-(4.6), with gj in (4.3) replaced by gj M in (4.11), is TVB 
and second-order accurate except at sonic points, again under CFL condition (4.8). 

Proof. (a) Since b > 1, in smooth regions away from critical and sonic points, we 
have, when Ax is small, 

b = 1 + 1 j)(Ux)j + O(AX2), gi f g + 1 4g2j172 = Axa(a1)u) (x) 
hence (4.9) is satisfied. Also, it is easily seen that gb gb+ >o, so 

b- gb max( gJ1 | gjj) 

(4.12) 1 + b 1 +b i1 b 
Amaxt 2 j Ig+ 1/2 Ij + 1/21J 2 j 1~/2 

Hence, 
b b (4.13 ,h 

_-g1 1 + b Igj?12 1 + b 
(4.13) <f12- Au A~u1 - 2~ 

Moreover, if b < 3 and IVj+1/21 1Aa1~1/21 < 1, then 

"j + 1/2 + Yj+1/21 < ?Idi+1/21 + X J+1/21 

< I j +1/2I + 1?b A21 +71/2(1 - I a +1/21 

< Iv1?72I ?(1 - IVj+1/21) = 1, 

i.e., part (a) is proven. 
(b) Following the lines of the proof of Theorem 2.2. Except here the absolute 

value function in the definition of fj?1/2 is not smooth at 0, so we have a local 
degeneracy to first-order accuracy at sonic points. C1 

Harten's modified flux technique can of course be applied to any first-order 
E-flux. In order to get TVB full second-order, we again try to use it to the smooth 
Lax-Friedrichs flux. Define 

(4.14) fj?1/2= i[f(u) ?(u1u1)?g1+g1~1- A\uu. 

Here we use a = 1/X in (1.14). 
By comparing (4.14) with the Lax-Wendroff second-order flux (4.7), we see that 

we must have 

(4.15) 1j(g1 + gj+?) = - Xa2) Auj + O(Ax2) 

in order to get second-order accuracy. 
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Let 

(4.16) a(a) - XaA ) 

and g1~172, g1, gjb, gjbM be defined by (4.4), (4.3), (4.10) and (4.11), respectively; we 
have the following 

THEOREM 4.2. (a) Scheme (2.2), (4.14), (4.16), (4.2)-(4.4) is TVD and second-order 
accurate, except at critical points, under the CFL condition (4.8); Scheme (2.2), 
(4.14), (4.16), (4.2), (4.3), (4.10) is TVD and second-order accurate, except at critical 
points, under the CFL condition 

(4.17) A max Ia.+ 1/2 1 < 4_ 1- 

(b) Scheme (2.2), (4.14), (4.16), (4.2), (4.3), (4.11) is TVB in 0 < t < T, and 
second-order accurate in smooth regions, under the CFL condition (4.17). 

Proof. (a) Following the lines of proofs in [1] and Theorem 4.1, we have, for (4.3), 

Yj+ 1/2 K u(d+ 1/2), so we need 

Xlaj+1/2 + Yj+11/2 I + XIY7+1/21 

X Ia?+1/21 + 421 -(XIj+1/21)] < 1, 

which is guaranteed if X I 1? + 1/21 < 1, because 

max (s + 2(1 _ 52)) - 1. 

For (4.10), we have +1/2 < (1 + b)a(dJ+1/2)/2, so for CFL condition we need 

Xldj+1/2 + Yj+1121 < XldJ+1/2| + 4 1 -(XRJ+1/2) | 1, 

which is guaranteed if X IJ+1/21 < 4/(b + 1) - 1, because 

1 + b (1 _ S2) < 1 and 0 < s < 1 

if and only if 

0 < s 4+ -1. 

(b) Following the lines of the proof of Theorem 2.2. El 
Remark 4.1. The CFL condition (4.17) is 4/(1 + b) - 1 < 1 for b > 1. (For 

example, if b = 1.5, the CFL number is 4.) The decrease of CFL number is 
compensated by the second-order accuracy at sonic points. 

Remark 4.2. The TVB modification procedure should also be applicable to other 
TVD schemes involving the "minmod" function m. 

Acknowledgment. The author would like to thank Professor Stanley Osher for his 
valuable help and suggestions. 

Appendix. Numerical Results. The numbers in this appendix are often written in 
exponential forms; for example, 4.2( -3) means 4.2 x I0. 

All the tables are collected at the end. 
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Example 1. TVD and TVB schemes (3.7) (third-order version, i.e., m = 2 in (2.4), 
and ai = ,oO, ; 31 ='9,oj 42; CFL number = 3X0 in (3.7); see [10] for 
details) are used to solve Riemann problems of Burgers' equation 

U U(X'0)~ UL, x0 
(A.1) ' ( 2 

= 
x 0) (UX<O \ 21x UR, x >0. 

Case (i): UL = 2, UR= -1. The exact solution is a moving shock: 

( 2, x < lt, 

We use Ax = 1/80, t = 1.0 and print out the numerical shock transitions for six 
different schemes. EO and LF refer to the building blocks (2.3), (1.11), (1.14); the 
linear scheme is the scheme with all the limiters in (2.4) removed; we take the largest 
permissible b in (2.7) and the largest permissible CFL number (2.9), (3.10). M in 
(2.11) is taken to be 50 (we use M = 50 for most of the computations); 3-3 means 
the scheme is third-order in time and space. 

3-3-LF-TVD: 
2.0000, 1.9989, 1.4344*, -0.6141, - 1.0000 

3-3-EO-TVD: 
2.0000, 2.0000, 1.6567*, -0.8375, -1.0000 

3-3-LF-TVB: 
2.0000, 2.0004, 1.9991, 1.4342*, - 0.6142, - 1.0001, - 1.0000, - 1.0000 

3-3-EO-TVB: 
2.0000, 1.9997, 2.0008, 1.6577 *, - 0.8378, - 1.0013, - 0.9999, - 1.0000 

3-3-LF-Linear: 
2.0364, 1.8316, 2.4171, 1.5368*, -0.7970, -1.2230, -0.9861, -0.9933 

3-3-EO-Linear: 
2.0579, 1.8415, 2.2696, 1.7280*, -1.0718, - 0.9782, - 1.0163, - 0.9975 

(The starred positions are the positions of the shock.) 
Several Observations: (1) The transitions of 3-3-LF and 3-3-EO schemes are both 

very sharp: about 3-point transitions; 
(2) There is no substantial difference between LF and EO building blocks; 
(3) Oscillations in TVB schemes are small ( < 0.lMA x2); 
(4) Oscillations in linear schemes are large (of order 0(1)), as expected. 
Case (ii): UL = 4, UR = 2. The exact solution is a rarefaction wave: 

4 3 if x < 4t' 

(A.2) u (x, t)= x/t if 4-t < x < 2t, 
t2 if x > 2 t. 

There is also an entropy-violating expansion shock solution: 

(A.3) ( ) (2 ~~~~~~~~if x > 5 t. 

This time we use Ax = 1/80, t = 0.4 and two schemes: 1-3-EO-TVD (Euler 
forward in time) and 3-3-EO-TVD (since there is no sonic point, any upwind scheme 
is the same in this case). The numerical output (which we omit to print out) shows 
that the 1-3-EO-TVD scheme converges to the wrong solution (A.3), while 3-3-EO- 
TVD scheme converges to the correct solution (A.2). This indicates that Euler 
forward in time is dangerous for entropy condition, while 3-3 schemes are better. 
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(We have also used our 3-3 schemes for many other test problems, including some 
problems with nonconvex f(u). No entropy-violation solution was observed.) 

Example 2. TVD and TVB globally high-order schemes (3.7) are used to solve a 
linear periodic problem with smooth initial condition (the scheme is nonlinear!): 
(A.4) ut + x =0, u(x,0) = sinTx. 

The solution is computed in -1 < x < 1 up to t = 2 (after one period in time). 
We use a third-order (same as in Example 1) and a fifth-order scheme (m = 3 in 

(2.4); 
7 3 4 7 1 

ai= 20' 10' 15' '120' 40; 
291201 -198401 88063 -17969 73061 
108000' 86400 ' 43200 0 43200 ' 432000 

in (3.7)); M = 50 in (2.11), the largest permissible b and X in (2.7), (2.9), (3.10). 
The errors and numerical orders are listed in Table 1. 
We observe that the results in Table 1 agree with the theory pretty well: The TVD 

schemes are first-order in LO-norm and second-order in LI-norm, while the TVB 
schemes have full high-order of accuracy both in L1 and in Loo. 

Example 3. The third-order schemes in Example 2 are used to solve the same 
linear equation with a discontinuous initial condition: 
(A.5) u(x,0) = singx + 0.5sign(singx). 

We are interested in the behavior of the schemes near discontinuities and in 
smooth regions. We use Ax = I and compute the solution up to t = 2 (after one 
period in time). 

From the printout (which we omit) we observe that the schemes behave similarly 
as in Example 2 in smooth regions. For example, at x = 0.5 (which is a critical 
point), the errors for TVD and TVB schemes are 2.6(-3) and 1.8(- 5), respectively. 
These numbers are almost identical to the corresponding errors [2.6(-3) and 
2.2(- 5)] in the smooth problem of Example 2 with the same Ax. 

Near the discontinuity x = 0, we print out the errors at ten points for each 
scheme: 

3-3-TVD: 
- 3.9( -2), 5.8( -3), 8.3( -2), 1.9( -1), 3.2(- 1), *,-3.8(- 1), - 2.5(- 1), 
- 1.4( - 1), - 5.5(- 2), 7.4(- 4) 

3-3-TVB: 
- 3.9(- 2), 5.4(- 3), 8.2(- 2), 1.9(- 1), 3.2( 1), *,-3.8(- 1), - 2.5(- 1), 
-1.4(-1), -5.4(-2), 9.6(-4) 

where the star * is the position of the discontinuity x = 0. 
We can see that the TVD and TVB schemes are almost identical near the 

discontinuity. There is no extra oscillation for the TVB scheme in this case. 
Example 4. Same schemes as in Example 3 are used to solve the nonlinear 

Burgers' equation with periodic initial conditions: 

U2\ 1. 
(A.6) at +( u ) 0, - < x < I1, u(x,0) = a + - sin~rx. 

The exact solution is smooth up to t = 2/nr, then it develops a moving (if a : 0) 
shock which also acts with the rarefaction waves. We can get the exact solution by 
Newton iteration. For details, see [5]. 
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Case (1): a = 1. There is no sonic point in this case. Hence we may use either EO 
or LF building blocks. We use the same parameters b, X, M as in Example 2. 

The errors of the numerical solutions at t = 0.3 are listed in Table 2. Since the 
exact solution is still smooth, the numerical results are very similar to those of 
Example 2: TVD are first-order in Lo. and second-order in L1, while TVB are 
third-order globally. There is no substantial difference between the LF and EO 
building blocks. 

At t = 2/x, the shock begins to form. We use Ax = 1/80 and print out the errors 
at 10 points near the shock for both schemes: 

3-3-LF-TVD: 
- 1. 5 (-3), 2.0( -3), 1.8( -2), 1.8( -2), - 6.5(-2)* 9.8( -2), 4.8( -2), - 7.0( -3), 
-1.2(-2), -5.3(-2) 

3-3-LF-TVD: 
- 1.5( - 3), 2.2( - 3), 1.9( - 2), 1.8( - 2), - 6.6( - 2)*, 9.8( - 2), 4.8( - 2), - 7.0( - 3), 
-1.2(-2), -5.3(-3) 

where the star * is the position of the shock. 
We can see that there is essentially no difference between the TVD and TVB 

schemes in this case. 
In smooth regions the numerical solutions are very good. We compute the L1 and 

Loo errors in the smooth region 0.1 away from the shock (i.e., lx - shock > 0.1) 
and list them in Table 3. From the table we can see that the error is of the same size 
as in the smooth case t = 0.3. 

At t = 1.1, the reaction between the shock and the rarefaction waves is over. The 
solution becomes monotone between shocks. In this case the TVD and TVB schemes 
yield almost the same results. For smooth region errors see Table 3. For the 
behaviors near the shock, we again print out the errors at 10 points for each scheme: 

3-3-LF-TVD: 
- 3.5( -4), 1.0( -3), 1.8( -3), - 2.1(- 3), - 6.0( -2), *,6.9( -2), 6.7( -5), 
-1.3(-3), -6.0(-4), -5.2(-4) 

3-3-LF-TVB: 
-8.6(-4), -9.9(-4), 4.1(-3), 3.8(--3), -5.4(-2), *, 6.3(-2), -4.7(-3), 
-3.0(-3), -2.6(-4), 3.2(-4) 

where the star * is again the position of the shock. 
As before, we do not observe any essential difference between the TVD and TVB 

schemes near the shock. 
Case (ii): a = 0.25. There exist sonic points in this case, so LF is preferred to EO. 

For errors at t = 0.3 (smooth solution) see Table 2. We observe that 3-3-EO (both 
TVD and TVB) becomes first-order in Loo and second-order in L1, while 3-3-LF-TVB 
is still globally third-order. The errors in smooth regions at t = 2/vr and at t = 1.1 
are again listed in Table 3. The shock transitions are similar to those of Case (i) 
above, so we omit printing them. 

Example 5. The same 3-3 scheme as in the previous examples (2-dim. version, see 
[10]) is used to solve a 2-dim.linear problem with smooth periodic initial condition: 

(A.7) u ? u + uY= 0, -1 < x, y s 1, u(x, y,0) = sin7rxsiniy. 

We compute the solution at t = 2 (after one period in time). For CFL number we 
just use the 1-dim. restriction (3.10). 
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For numerical errors see Table 4. 
We observe that the errors (TVB case) are roughly twice those of the correspond- 

ing errors in the 1-dim. case (Table 1). This is expected by theory. 
Example 6. The same scheme as in Example 5 is used to solve the same linear 

equation with periodic discontinuous initial condition: 

(A.8) u (x, y, 0) = 1 if (X, Y) 
G 

S. 

where S = {(x, y): Ix - yj < 1/ V2, Ix + yI < 1/ 2} is a unit square centered at 
the origin and rotated by r/4 (see [3]). We use Ax = 1 (which is not too small) and 
again the 1-dim. CFL restriction (3.10). For the TVB scheme we use M = 50 in 
(2.11). 

The numerical values at t = 2 (after one period in time), at t = 8 (after four 
periods in time) and at t = 16 (after eight periods in time) are computed. We print 
out the values at x < 0, y = 0 and y = -0.4. The exact solutions are 0 to the left of 
the star * and is 1 to the right. 

t = 2, y = 0; TVD: .008,.014,.068, *.24,.48,.72,.90,.99,1.00,1.00,1.00 

t =2, y = 0; TVB: - .082, - .041,.10, *.33, .59, .83, .98,1.05,1.06,1.04,1.04 

t= 2, y = - 0.4; TVD: .011, .009, .010, .079, .12, .10,.32, *.53, .73, .88, .90 

t= 2, y = - 0.4; TVB: - .016, - .026, - .036, - .024, .038, .16, .35, *.56, .77, .92, .98 

t = 8, y = 0; TVD: .056,.058,.084, *.19,.36,.55,.70,.78,.81,.81,.76 

t = 8, y = 0; TVB: - .025,.018,.12, *.28,.46,.65,.82,.96,1.07,1.14,1.16 

t= 8, y = - 0.4; TVD: .041,.055,.081,.090, .12, .24, .35, *.49,.61,.68, .70 

t= 8, y = - 0.4; TVB: - .041, - .033,006,077,.18,30,44, *.58, .70, .78, .82 

t = 16, y = 0; TVD: .13,.13,.13, *.18,.28,.40,.51,.58,.60,.60,.58 

t= 16, y = 0; TVB: .012,.038,.12, *.24,.39,.56,.73, .89,1.01,1.09,1.12 

t= 16, y = - 0.4; TVD: .11,.12,.12,.13,.19,.20,.22, *.34,.41,.48,.51 

t= 16, y = - 0.4; TVB: -.019, -.011,.031,.10,.20,.31,.43, *.55,.64,.71,.73 

Observations: (1) With the 1-dim. CFL number the TVD and TVB schemes seem 
to be still stable. This indicates that the CFL restriction in [10] (half of the CFL 
restriction of 1-dim.) may be too conservative. 

(2) The TVB scheme performs better than the TVD. The overshoots and under- 
shoots are not growing drastically when t is large. 

TABLE 1 (Example 2) 

t = 2; E: type of error; r: numerical order 

3-3 Scheme 5-5 Scheme 

E Ax TVD r TVB r TVD r TVB r 

1/10 8.1( - 2) 1.6( - 2) 1.8(- 1) 1.1( - 3) 

Loo 1/20 2.5(- 2) 1.67 2.0(- 3) 2.96 6.4( - 2) 1.48 2.6(- 5) 5.33 
1/40 8.2(- 3) 1.63 2.5(- 4) 3.01 
1/80 2.7(- 3) 1.62 2.4(- 5) 3.40 

1/10 2.3(- 2) 1.0(- 2) 9.4(- 2) 6.8(- 4) 
L1 1/20 5.0(- 3) 2.24 1.3(- 3) 2.98 2.4(- 2) 1.95 1.6(- 5) 5.38 

1/40 1.0(- 3) 2.29 1.6(- 4) 3.02 
1/80 2.0(- 4) 2.33 1.5(- 5) 3.45 
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TABLE 2 (Example 4) 

t = 0.3; E: type of error; r: numerical order 

_ B EO building block LF building block 

E A X TVD r TVB r TVD r TVB r 

1/10 1.6(-2) 1.3(-2) 1.6(-2) 1.7(-2) 

LO 1/20 6.7(-3) 1.26 2.6(-3) 2.36 6.7(- 3) 1.21 2.6(- 3) 2.67 
1/40 2.2(-3) 1.57 3.6(-4) 2.83 2.2(-3) 1.58 3.7(-4) 2.95 

1.00 1/80 7.4(-4) 1.60 5.0(- 5) 2.86 7.4(- 4) 1.60 4.8(- 5) 2.95 

1/10 4.4(- 3) 2.5(- 3) 4.5(- 3) 2.9(- 3) 
L1 1/20 1.0(- 3) 2.14 3.8(-4) 2.75 1.2(- 3) 1.86 4.0(- 4) 2.84 

1/40 1.9(-4) 2.38 4.9(- 5) 2.95 2.4(- 4) 2.36 5.1(- 5) 2.98 
1/80 3.7(- 5) 2.38 6.8(- 6) 2.86 4.4(- 5) 2.47 7.4(- 6) 2.79 

1/10 1.1(-2) 1.5(-2) 1.2(-2) 1.2(-2) 
Lej 1/20 3.7(- 3) 1.63 5.5(- 3) 1.45 3.9(- 3) 1.61 1.9(- 3) 2.62 

1/40 1.6(- 3) 1.18 2.3(- 3) 1.29 1.7(- 3) 1.16 2.4(- 4) 3.00 
0.25 1/80 8.2(- 4) 1.00 1.3(- 3) 0.84 5.9(- 4) 1.57 2.9(- 5) 3.05 

1/10 3.0(- 3) 2.5(- 3) 3.7(- 3) 2.1(- 3) 
L1 1/20 8.4(- 4) 1.82 5.9(- 4) 2.17 8.9(- 4) 2.07 2.8(- 4) 2.91 

1/40 1.9(- 4) 2.15 1.3(- 4) 2.17 1.7(- 4) 2.40 3.3(- 5) 3.07 
1/80 4.1(- 5) 2.21 2.7(- 5) 2.27 3.1(- 5) 2.45 4.1(- 6) 3.01 

TABLE 3 (Example 4) 

Errors in smooth region I x - shock I > 0.1; Ax = 1/80; E: error type 

EO building block LF building block 

= = t= 'r/2 t= 1.1 t = 'r/2 t= 1.1 

E TVD TVB TVD TVB TVD TVB TVD TVB 

1.0 LM 9.5(- 4) 1.1(-4) 2.8(-5) 3.3(-5) 9.6(-4) 1.5(- 4) 2.9(- 4) 4.0(- 5) 
L1 5.9(- 5) 9.5(- 6) 1.1(-5) 1.1(-5) 7.2(-4) 1.2(- 5) 1.0(- 5) 1.0(- 5) 

0.25 LOO 1.1( - 3) 7.8( - 4) 1.2( -3) 9.3( -4) 7.6( -4) 8.5( - 5) 1.2( - 5) 8.8( - 6) 
LI 5.7(- 5) 1.7(- 5) 2.2(- 5) 2.1(- 5) 4.7(- 5) 6.1(- 6) 1.3(- 6) 1.2(- 6) 

TABLE 4 (Example 5) 

L.,: L,,-error; L1: LI-error; r: numerical order 

3-3 TVD 3-3TVB 

Ax ' L, r L. r L, r 

1/10 1.6(- 1) 2.2(- 2) 3.2(- 2) 1.3(- 2) 
1/20 5.0(- 2) 1.63 4.8(- 3) 2.18 4.1(- 3) 2.95 1.7(- 3) 2.96 
1/40 1.7(- 2) 1.61 1.1(- 3) 2.15 5.2(- 4) 2.98 2.1(- 4) 2.98 
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